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Current and future uses suggest that wireless communications and networks should 

become an essential, possibly predominant, part of the world’s global information 

infrastructure. Do you own a cell phone? If not, do you own a cordless phone? How 

about a laptop computer with one or more built-in wireless interfaces, such as WI-FI 

(wireless fidelity) or Bluetooth? Or maybe you have a personal digital assistance with a 

wireless capability? Perhaps you have already used some of these devices to access the 

Internet while flying in a commercial jet. Do you use geo-location devices based on the 

global positioning system? Are you looking ahead to the day when multimedia devices in 

your home entertainment system transmit sound and movies around your house without 

wires? How about future highway systems where cars wirelessly receive information 

relevant to their surroundings? Or even where cars wirelessly exchange heading and 

velocity information in order to improve traffic flows and to avoid collisions?  

Beyond these well-known or easily imagined uses of wireless technology, 

ongoing research in industry and academe promises to open a range of new applications. 

For example, advances in mobile ad-hoc networks (MANETs) promise easily deployable 

local and metropolitan networks without running communication cables to connect 

nodes. Technology of this type seems aptly suited for deployment when responding to 

natural disasters or terrorist attacks that might destroy or disable preexisting wired 

communications infrastructures. As another example, scientists and engineers envision 
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deploying tiny, wireless sensor and compute nodes (sometimes called “motes”) that can 

form a network to make and convey measurements from small physical areas and to 

aggregate a picture of the situation across a geographic expanse. Many applications are 

imagined: measuring ocean temperatures and currents, analyzing moisture content in 

soils, gauging ground motions, assessing sunlight in forests, and monitoring stresses in 

structural supports of large buildings. Further, tomorrow’s hospitals will likely find 

patients outfitted with medical devices that use wireless communication to transmit vital 

signs for monitoring and analysis. Even in something as seemingly mundane as grocery 

shopping, engineers envision a future where product packages include wireless, radio-

frequency identification (RFID) tags that could enable quick, automated checkouts and 

timely reordering and restocking.  

What might this growing array of applications mean for the way we design, 

deploy, and manage wireless networks? Several things should be abundantly clear. The 

number of networked devices will become quite large, maybe exceeding thousands per 

person. Further, wireless communication implies device portability and mobility at a 

variety of speeds. Potential exists for wireless networks to vacillate between sparse and 

dense connectivity as the population of reachable devices varies.  Thus the number of 

devices, communications channels, and data transmissions will become too large, 

varying, and uncertain to be deployed and managed with the costly, labor-intensive 

techniques in use today. Instead, wireless devices and networks must become adept at 

self-organization – allowing devices to reconnoiter their surroundings, cooperate to form 

suitable network topologies, and monitor and adapt to changes in the environment, all 

without direct human intervention. 
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This paper surveys research investigating how self-organization might be applied 

in tomorrow’s wireless networks – to share and manage resources, to form and maintain 

structures, and to shape behavior. The paper begins, in the next section, by considering 

two aspects of self-organization: (1) self-organization as a natural phenomenon that 

might arise in any distributed system and (2) self-organization as a design principle that 

can be applied to design and engineer distributed systems. These two aspects represent a 

duality (and tension) regarding self-organization. On the one hand, self-organization is 

likely to appear in any distributed system, where numerous components interacting on a 

microscopic level lead to a range of macroscopic behaviors that emerge, or self-organize, 

at a global level. In this view, self-organization is a natural consequence of distributed 

systems; however, the behaviors that emerge are not controlled and thus may be 

unpredicted and undesired. On the other hand, system components may be endowed with 

specific rules that lead to the emergence of intended and desired global behaviors. In this 

view, self-organization is a design principle employed to achieve specified objectives. 

The paper surveys a number of models that could serve as underlying design principles 

for self-organization in distributed systems. 

In a third section, the paper examines specific attempts to apply self-organization 

in wireless networks for particular aims, divided into five categories: (1) resource sharing 

(e.g., of spectrum, bandwidth, and processing capacity), (2) structure formation and 

maintenance (e.g., of topologies, software components, and conversational syntaxes), (3) 

behavior shaping (e.g., of routing, information dissemination, querying, and task or 

service placement), (4) resource management (e.g., to synchronize time and conserve 

power), and (5) resiliency (e.g., repairing faults and resisting attacks). 
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In a discussion section, the paper assesses the current state of the art in self-

organization in wireless networks and ponders some open questions. One question 

centers around self-organization to achieve competing design objectives. Can self-

organizing design models provide suitable solutions to such problems? Another question 

arises from the tension between natural and intentional self-organization. Can intentional 

self-organization be affected negatively by naturally occurring self-organization in a 

distributed system? Alternatively, can multiple self-organizing behaviors, whether 

designed or unintended, interfere or interact with each other to form unintended 

consequences? In other words, what must designers surrender in order to exploit self-

organization? 

Self-Organization 

“Sometimes a system with many simple components will exhibit a behavior of the whole 

that seems more organized [or ordered] than the behavior of the individual parts…[such] 

complex phenomena are called emergent behaviors [or properties] of the system.”1 

Emergent properties seem to arise naturally in complex adaptive systems “via a process 

of self-organization, autocatalysis, or autopoiesis.”2 Self-organization appears in many 

natural and man-made systems, such as biological organisms3, ecosystems4, food webs5, 

geological systems6, metabolic networks7, transportation networks8, communication 

networks9, and stock markets10. The following subsection considers self-organization as a 

natural phenomenon, providing a brief summary of current scientific thinking on how 

self-organization arises, what advantages might accrue from self-organization, and how 

self-organization might be detected or measured. A subsequent subsection considers self-



K. Mills  4/26/2006 

 5 

organization as a design principle and discusses several models that might be applied to 

achieve intentional self-organization.  

Self-Organization as a Natural Phenomenon 

Complex adaptive systems consist of “mutually entangled” components, where change in 

any component propagates to many (or all) other components through component 

interactions that exhibit a ripple effect over space and time. “Complex systems will 

typically exhibit a tangle of interconnected positive and negative feedback loops, where 

the effects of any change in a component cascade through an increasing number of 

connected components.”11 As a result of such interactions, system (or global) state tends 

to move over time toward some coherent pattern. This is the essence of self-organization. 

Because self-organized patterns arise from many interactions spread over space and time, 

it can be difficult to predict what system state will appear. Some system states are said to 

be emergent properties because they have no meaning for individual components. For 

example, gas (a collection of molecules) exhibits both temperature and pressure, which 

might be seen as measures of the strength of interactions among molecules.11  

Given that self-organization entails movement from less ordered system state 

toward a more coherent pattern, what patterns might be observed? One possibility is 

equilibrium, where system state reaches some fixed point. A second possibility is 

oscillation, where system state cycles repeatedly through the same series of points. A 

third possibility is chaos, where system state wanders forever through a non-repeating set 

of points. Oscillation and chaos may be considered terminal states, while equilibrium 

may be transient. Some scientists have noted a tendency for equilibrium states in certain 

systems to exhibit a delicate balance, referred to as self-organized criticality12, where 
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system state can be driven out of equilibrium. For example, a system in equilibrium may 

experience turbulence, where system state becomes perturbed and moves through a set of 

points for some period of time before returning to equilibrium. Several natural systems 

appear to exhibit punctuated equilibria13, where the system state moves through 

occasional periods of turbulence with a frequency inversely related to magnitude. 

Similarly, a system in equilibrium may transition to chaos or oscillation (or perhaps move 

toward a less ordered state). Movements among these various patterns (see Figure 1) are 

usually considered to be phase transitions.14 

  Investigations of many natural and man-made dynamic systems reveal that phase 

transitions occur quickly after reaching some threshold. For example, Kuramoto shows15 

a system of coupled oscillators remains desynchronized until coupling strength reaches a 

critical threshold after which synchronization advances in stages that increase the 

coupling strength, which further increases the scope of synchronization. Floyd and 

Jacobson observe9 that network traffic becomes synchronized only when the number of 

sources exceeds some transition threshold. Roli and Zambonelli report16 that a dissipative 

unordered equilibrium
(self-organized criticality)

oscillation

chaos

turbulence

Figure 1: Possible Phase Transitions Among System States 
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cellular automata model exhibits a macroscopic spatial structure as soon as external 

stimulation reaches a threshold value and exhibits a chaotic pattern once external 

stimulation passes a higher threshold value. In a study of random graphs, Erdös and 

Rényi identified17 a phase transition occurs as the number of randomly placed links 

exceeds half the number of nodes, after which a graph becomes fully connected. 

Why do so many dynamic systems exhibit self-organizing properties? What 

benefits does self-organization convey?  Literature review suggests five major benefits 

arising from self-organization. Adaptability is a key benefit both in the short run and in 

the long run. Short-term flexibility allows a dynamic system to maintain stable operating 

states in the face of changing environmental conditions.18 Long-term evolution enables a 

dynamic system to develop new equilibrium states in response to shifting environmental 

patterns. This evolutionary response suggests a second benefit – self-organization 

increases the problem solving range of a system.19 Evolution implies memory, which 

implies learning. Beyond that, self-organizing systems can solve problems that might be 

unsolvable currently using existing analytical techniques.1 Even for currently solvable 

problems, self-organizing systems can devise innovative solutions that might otherwise 

go undiscovered.20 Many self-organizing systems also exhibit a third benefit: short-term 

robustness and long-term survivability. Lacking a point of central control and possessing 

an ability to adapt to changing conditions, self-organizing systems can overcome the 

failure of individual components.21 In the longer term, a self-organizing system can 

continue to pursue system-wide goals even beyond the lifetime of all current, system 

components.22 Scalability is a fourth benefit from self-organization.22 Self-organizing 

systems may grow without bound because complete information does not need to be 
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disseminated throughout the system and processed by all components. Despite the 

potential for large scale, self-organizing systems prove quite efficient (fifth benefit) at 

solving difficult optimization problems. Self-organizing systems exhibit the principle of 

least action, which tends to minimize distance to an optimal (stable) state.1  

Detecting or measuring the presence or degree of self-organization is still the 

subject of significant research. Systems may self-organize in space, in time, and in 

spatiotemporal combinations. Generally, self-organization should exhibit some increased 

correlation along a dimension of measurement – implying some sort of self-similarity. 

For example, self-organizing systems often organize into a hierarchy where statistical 

characterization of spatial organization at all layers appears quite similar.6 Alternatively, 

self-organizing systems can show correlations in time, such that scaled versions of 

various time windows (e.g., seconds, minutes and hours) yield similar statistical 

characteristics.23 Physicists often “transform the autocorrelation function into the Fourier 

spectrum. A power-law decay for the correlations as a function of time translates into a 

power-law decay of the spectrum as a function of frequency…also called 1/f noise.”24 

Fourier transforms can also reveal the presence of oscillations by identifying specific 

dominant frequencies.25 Wavelet transformations may be used to find correlations among 

spatial or temporal scales.26 

Other measures of self-organization have also been proposed. For example, 

Oprisan27 defines three measures, angular momentum, contrast, and correlation, to 

describe (changes in) the level of aggregation within a spatial extent. Other 

researchers28,29 leverage thermodynamics, using decrease in entropy to indicate increased 

order arising from self-organization. Alternatively, some researchers30-32 formulate 
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measures of statistical complexity such that changes in complexity point to increasing 

system order. 

Self-Organization as a Design Principle 

 Noting the pervasive presence of self-organization in natural and social systems and also 

respecting the potential benefits of self-organizing systems, numerous researchers have 

begun to investigate how models of self-organization can be applied intentionally to 

design large, distributed systems. This section surveys some representative models, 

organized loosely as biological models, social models, economic models, and other 

models. 

 Biological Models. Numerous scientists have uncovered evidence of self-

organization in biological processes, inspiring computer-science researchers to 

investigate their application to system design. For example, during biological 

reproduction embryos form as a collection of homogeneous cells that develops into a 

complex organism with specialized functions. This process of multi-cellular 

embryogenesis uses local self-coordination to enable cells to differentiate their functions. 

Researchers at MIT33 are investigating the use of such techniques to enable a substrate of 

homogeneous (or amorphous) computers to self-organize into differentiated structure and 

function to solve various problems. NASA researchers34 are also investigating 

embryogenesis as a means to adapt undifferentiated processors on deep-space probes in 

order to permit changes in spacecraft function during missions of long duration. Nagpal35, 

a researcher at Harvard, has proposed a set of primitives, based on mechanisms from 

embryogenesis, which engineers could use to cause homogeneous processes to self-

organize into desire functionality and structure. 
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   Other researchers aim to exploit the neural development process that allows an 

undifferentiated collection of neurons in many different parts of the brain to self-organize 

into specialized pattern recognition networks that can distinguish and classify sensory 

inputs. For example, Kohonen36 has developed an algorithm for self-organizing maps 

(SOMs) that can transform a multidimensional space of inputs into a lower dimensional 

lattice of neurons such that topological relationships among the input space are reflected 

into the constructed neural network. Researchers37 apply SOM techniques to a range of 

system-engineering challenges. 

Other human biological functions also serve as an inspiration and design model. 

Hofmeyr and Forrest 38, for example, define an artificial immune system and describe its 

application to intrusion detection in computer networks. IBM has founded an entire 

research program, autonomic computing39, based on modeling self-managing systems 

after concepts inherent in the human nervous system. Regulatory genetic systems in 

living cells have been modeled as NK Boolean networks3 (of N logic elements each with 

K inputs and one output) or probabilistic Boolean networks40 that self-organize into 

attractors comprising cyclic sequences of states. NK networks have been applied in a 

range of applications, including modeling structure dynamics in industrial networks41and 

finding a combination of values that satisfies a Boolean proposition42. 

Evolutionary processes have also inspired computer scientists to apply natural 

selection to evolve solutions to a wide range of problems43-47 that would be difficult to 

solve using more conventional techniques. Computer scientists have also begun to 

examine whether genetic mechanisms operating at the cell level might be applied to solve 

computing problems. For example, scientists have discovered RNA editing48, which refers 
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to any process that produces messenger RNA molecules not specifically encoded in DNA 

– implying a means to inject new information into evolving cells. Perhaps RNA editing 

can be used to encode and evolve symbol sets through which self-organizing systems 

could develop vocabularies for communicating.49 

Social Models. Recently, scientists have begun studying the organization and 

function of swarms, such as birds, insects, viruses, molds, and pedestrians. All such 

swarms appear to exhibit self-organization arising from the ability of swarm members to 

exchange information with each other, either directly or indirectly through their shared 

environment. Direct information exchange (e.g., through visual or auditory channels) 

implies a synchrony in time. For example, birds can maneuver as flocks if each bird 

follows three general rules50: (1) alignment (move toward the average heading of other 

birds), (2) cohesion (maneuver toward the average position of other birds) and (3) 

separation (avoid coming too close to other birds). Similarly, large groups of fireflies can 

synchronize their flashing, using visual cues and internal timing mechanisms.51 Computer 

scientists have also based information dissemination models on the mechanisms through 

which virus epidemics flow through populations.52  

Indirect information exchange, or stigmergy53, implies that swarm members are 

mobile; thus, some form of information must be deposited in space to be encountered by 

members arriving later. For example, ants can deposit a chemical (pheromone) that can 

attract other ants, which strengthen the scent attracting additional ants and so on. This 

self-organizing behavior leads to ant trails used to retrieve food and return it to the nest. 

As the food supply becomes exhausted, ant visits on a trail diminish, the scent decays, 

and the trail is eventually abandoned. Similar behavior has been observed in slime 
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molds54, which normally move through dirt as individual single-celled organisms until 

environment conditions deteriorate. A worsening environment leads cells to emit a 

chemical that guides collective movement so that large mold structures emerge, 

presumably allowing the cells to survive until the environment improves. Computer 

scientists have begun to apply stigmergy in many applications55, notably robotics56, 

communications routing57, and network design.58 

Self-organizing swarm behaviors have also been discovered in crowds of 

pedestrians59, where repulsive interactions give rise to bidirectional lanes and to 

synchronized alternation at bottlenecks. On grass, such pedestrian interactions lead to 

deformations that reinforce the behaviors. With enough use the deformations become 

barren paths, which can later be replaced with cement pavement, yielding an emergent 

sidewalk design. 

Economic Models. Economies are self-organizing systems where producers and 

consumers interact through markets to set prices under which to exchange goods and 

services. While most readers probably associate economics with capitalism, researchers 

are investigating how to design self-organizing information systems based on numerous 

economic models, including self-interest60, socialism61, communism62, altruism63, game 

theory64, and catallaxy65.   

Other Models. A number of other self-organizing models from physics and 

chemistry have been applied to design computer, communications, and information 

systems. Such models include electromagnetism66 (attraction-repulsion), 

thermodynamics67 (entropy reduction), molecular equilibrium68 (minimizing energy or 
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repulsion force), diffusion69 (chemical gradients), and phase-transition resistance70 

(stabilizing system state far from phase transition regions).  

Self-Organization in Wireless Systems 

Self-organization applied to wireless networks is not a new idea. Interested readers 

should consult a 1986 survey by Robertazzi and Sarachik71, which connected growing 

viability of wireless communications with the possibility of self-organization for 

topology formation, route selection, transmission scheduling, and task allocation. While 

many problems identified in the earlier survey continue to apply 20 years later, the nature 

of wireless networks has become more tangible (e.g., millions of cell-phone subscribers) 

and exhibits potential to reach much larger sizes (e.g., sensor networks) with more 

frequent mobility of infrastructural components (e.g., mobile ad hoc networks). The 

current survey focuses mainly on self-organization techniques applied in sensor and 

mobile ad hoc networks, which are not yet widely deployed. 

Self-organizing mechanisms could pay dividends in almost any kind of wireless 

network. For example, self-organization might be applied to adapt to changing user 

density and traffic patterns in fixed wireless networks, where only users move. Self-

organization could help reconfigure topologies as nodes move in and out of range in 

mobile ad hoc networks, where all nodes may move. Self-organization could form an 

initial topology among large numbers of wireless sensor nodes dropped across a 

geographic area, and then adjust the topology as sensors exhaust power and more sensors 

are injected. Rather than address particular network types, this paper considers 

application of self-organization to specific functions in wireless networks. The functions 

are treated in five, somewhat arbitrary, categories: (1) resource sharing (e.g., of spectrum, 
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bandwidth, and processing capacity), (2) structure formation and maintenance (e.g., of 

topologies, software components, and conversational syntaxes), (3) behavior shaping 

(e.g., of routing, information dissemination, querying, and task or service placement), (4) 

resource management (e.g., to synchronize time and conserve power), and (5) resiliency 

(e.g., repairing faults and resisting attacks). Readers should note that sometimes a self-

organizing wireless network treats several of these categories in combination in order to 

optimize among a variety of system traits. Often one of the traits of interest will be power 

conservation. For example, minimizing routing latency might be balanced against 

maximizing battery life. 

Resource Sharing 

Nodes and users in a wireless network must share a number of resources, such as 

electromagnetic spectrum, transmission bandwidth, and processing capacity. The task 

becomes difficult when the number of nodes and traffic demands are not known a priori 

or are not fixed. Self-organization can be used to discover initial participants and 

demands, to determine how best to allocate resources to satisfy an existing situation, to 

monitor changes, and to reallocate resources as needed. Consider some specific examples 

drawn from the literature. 

Processing. A mobile ad hoc network (MANET) requires wireless nodes not only 

to act as data sources and sinks but also as relays that forward packets among 

neighboring nodes. Assuming nodes have finite power, tradeoffs arise among network 

throughput (which should be as high as possible) and node lifetime (which should be as 

long as possible). Complete cooperation with forwarding minimizes a node’s lifetime, 

while completely uncooperative behavior drives throughput to zero. Srinivasan et al.72 
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describe a game-theoretic algorithm, based on Generous Tit-For-Tat, designed to drive a 

system of nodes to Nash equilibrium where each node achieves the best possible tradeoff 

among throughput and lifetime. Assuming that each node understands its maximum 

forwarding rate and maintains a history of its experiences regarding the rate at which its 

forwarding requests are honored, a node will reject a forwarding request beyond its 

maximum rate (outside healthy operating bounds) or if the node is forwarding more 

packets than another node is forwarding for it. This later decision allows a small amount 

of excess forwarding – representing the generous portion of the algorithm. 

Buttyán and Hubaux73 illustrate an even simpler, counter-based mechanism that 

requires forwarding packets for others to gain credits to originate local packets. They 

formulate a rule allowing a node to maximize its own packet origination rate conditioned 

on forwarding packets for others. For the parameters simulated, each node achieved an 

optimal packet origination rate by forwarding about five packets for each local packet. 

Typical energy-aware routing schemes maintain a list of possible routes and then 

forward packets with a uniform probability among them. Willig and colleagues74 observe 

that sensor networks may contain nodes with a range of capabilities, including 

differences in available power, and argue that network lifetime could be increased if more 

capable nodes handled more of the load. To enable asymmetric load assignment, Willig 

et al. define an altruistic (or friendly neighbor) approach, where nodes periodically 

announce their capabilities, location, and address, along with a time for which a node is 

willing to forward packets. The assumption is that only nodes with rich power sources 

would announce. The cost of forwarding packets over self-declared altruistic nodes is 

then discounted, thus increasing the probability of relaying packets through those nodes. 
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Simulation results show that this altruistic approach yields significant improvement in 

both network lifetime and response time when compared to a typical energy-aware 

routing scheme. 

Channel. Sohrabi and Pottie75 consider a group of randomly deployed sensor 

nodes that must form into a network and organize transmissions to maximize energy life. 

They propose a distributed algorithm where each node cycles continuously through two 

phases. In the first phase, a node operates in a random-access mode, first listening for 

invitations from other nodes or issuing such invitations. Successful invitation handshakes 

lead to modifications in a time-divided schedule (used in the second phase) that allow 

pairs of sensors to exchange data at agreed times. In the second phase, nodes exchange 

information according to the agreed schedule. Simulation results show that a network of 

150 sensors (each powered on only about 25% of the time) can be connected within five 

message times. 

Kompella and Snoeren76 present a distributed algorithm that allows individual 

sensors sharing a channel to independently adjust transmit power and rate to conserve 

energy without significantly degrading channel capacity or fairness on oversubscribed 

channels. Kompella and Snoeren observe that when channel load is low then messages 

can be sent more slowly (i.e., at lower power) without building up an excessive queue, 

while high load requires messages to be sent more quickly to avoid excessive queuing. 

They define a self-organizing approach were nodes sharing a channel snoop on 

transmissions and use measured transmission rates to estimate the message load at each 

node. Once each node has sent at least one message, then all nodes can converge to a 
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similar estimate of the channel load and each can then independently adjust its 

transmission speed to ensure that all queued packets get an equal share of the channel. 

    Wu and Biswas77 define a self-reorganizing slot-allocation protocol that 

enables clustered sensor nodes to reduce interference and conserve energy while 

providing reasonable latencies for monitoring applications. Initially, sensors in each 

cluster are assigned random transmission and reception slots and then the slot allocation 

schedule is adapted based on feedback derived from collisions. Here, collisions could 

arise when sensors in different overlapping clusters attempt to transmit at the same time. 

Collisions are detected at individual sensor nodes (and then transmitted to a cluster head) 

or are inferred by a cluster head that detects when a sensor does not use its assigned slot. 

Each cluster head examines collision information and adjusts slot allocations in an effort 

to reduce collisions. The main idea is that each cluster head will swap collision slots into 

free slots. When insufficient free slots exist, each cluster head has the authority to 

increase the duration of a transmission period to create additional slots. These 

independent adjustments continue with each transmission period until the cluster 

schedule reaches a stable state, free of collisions. Wu and Biswas show that this self-

organizing approach closely matches performance of an ideal slot-allocation algorithm. 

 Duque et al.78 describe an approach, based on self-organizing maps, to allocate 

spectrum to connections in a dynamically changing cellular network. Given a set of 

network measurements (e.g., cell interference and channel compatibility), Kohonen’s 

algorithm is used to construct a mapping into equivalence classes where all radio relays 

in a partition have similar interference situations. Subsequently, an iterative algorithm 

searches for variations in channel assignments that optimize network performance for a 
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given interference situation. The self-organized maps would be distributed to radio 

relays, where continuous monitoring would allow relays to switch channel assignments to 

match changes in the interference situation. 

Ho et al.29 describe a self-organizing algorithm that allows radio relays in a 

cellular network to create and dynamically adjust cell sizes to maintain maximum 

coverage with minimum interference. Each relay will periodically listen for neighboring 

relays. Hearing a new neighbor (or neighbor signoff) will stimulate a relay to conduct an 

expanding-ring search to calculate its distance from all reachable relays. Subsequently, 

the relay computes and distributes a new cell size, then waits for the next listening period. 

Ho and colleagues use an entropy-based complexity metric to reveal some critical 

characteristics about the delay between listening periods. Specifically, when the delay is 

too short, the network never self-organizes. Above a particular delay threshold the 

probability of the network self-organizing increases with the delay. Beyond a second 

delay threshold the network always self-organizes.       

Structure Formation and Maintenance 

Typically wireless networks, especially sensor networks, are deployed incrementally 

without central planning and must adapt to changes in node density and mobility, while 

simultaneously maximizing node life (i.e., minimizing power consumption) and meeting 

performance objectives. Designing and deploying static topologies cannot satisfy such a 

challenging combination of requirements. For this reason, numerous researchers 

investigate approaches that allow wireless nodes to self-organize into efficient clustered 

topologies and to maintain essential cluster properties in response to changing node 

populations. In special cases, networks may be formed from mobile sensor platforms, 
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which researchers consider how best to position. Some researchers have also begun to 

investigate how the software architecture and structure of individual nodes can be self-

configured to correspond to a node’s environment. A few researchers have even 

considered how communicating nodes can self-organize vocabularies for conversations. 

Consider a variety of examples found in the literature. 

 Topology Formation. Sensor nodes may be deployed with significant density, 

which could lead to redundancy in node coverage that might be exploited to extend the 

overall lifetime of a sensor network. Cerpa and Estrin79 describe one means this could be 

achieved through a self-organizing regime where individual sensor nodes probe their 

local communication environment and do not join in a multi-hop routing infrastructure 

until some need arises. For example, after detecting a high message-loss rate, a node 

could request other nodes in the area to join the network in order to relay messages. A 

node might also reduce its duty cycle upon detecting message losses due to collisions. 

Parunak and Brueckner80 consider server placement and selection in an ad hoc 

network where mobile nodes with constrained power lead to continuous topology 

changes. They propose a self-organizing approach, based on stimergic learning, that 

allows a server population to maintain the minimum necessary number of nodes at 

locations appropriate to serve a client population and that allows clients to learn where to 

direct service requests. Servers implement a reinforcement-learning algorithm where they 

extend their lifetime based on the number of client transactions arriving within a 

measurement interval. Clients share with direct neighbors a history of interactions with 

servers. Histories are reinforced based on positive and negative server interactions. 

Further, histories decay over time in order to give more weight to recent interactions. 
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Clients eliminate memory of any server that reaches a threshold of negative performance. 

Simulation results show that stimergic learning leads to significant power conservation 

without significantly reducing performance. 

   Hester et al.81 consider a network of fixed, low-power (and low-duty) sensor 

nodes that must form a routing topology in order to carry messages for any useful 

distance. They describe self-organizing algorithms for formation and maintenance of a 

spanning tree, where maintenance includes adjustments for both performance and 

reliability. Nodes periodically send beacon messages, which other nodes may hear if 

those nodes are powered on, listening on the same frequency and within transmission 

range. A beacon message includes a node’s address and information about its depth in a 

spanning tree. A node will attach itself to a beaconing node that has the least depth (i.e., 

so that the path to the root is shortest). The beaconing protocol forms an initial topology 

and adjusts the topology in response to node failures and arrivals. 

   Chan and Perrig82 define an emergent algorithm that enables a collection of 

sensor nodes to form a uniformly clustered topology based on simple local actions taken 

at each node in response to feedback from nearby nodes. A node declares itself a cluster 

head when the number of members that would join solely its cluster exceeds an adaptive 

threshold the decays exponentially with node density. Cluster heads periodically poll 

cluster members to determine if cluster control might more profitably migrate elsewhere, 

and will prompt more appropriate nodes to form clusters as needed. Simulation results 

show that the algorithm forms and maintains clusters of uniform size with a standard 

deviation of about 23%. 
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Sensor Placement. Some sensors are mounted on mobile platforms, which permit 

the option to enhance sensor coverage after initial deployment. Given that desirable 

coverage depends upon situation and environment, self-organizing approaches seem 

necessary to enable mobile sensor nodes to reorient their positions. Some researchers 

investigate such problems. For example, Heo and Varshney68 consider deployment of 

identical, mobile sensors, which provide a means to form a topology by self-propelled 

node relocations. Given an initial random topology Heo and Varshney consider a 

distributed self-spreading algorithm aimed to achieve a uniform topology giving 

maximum coverage of a region of interest in minimum time and with minimum energy 

consumption. The algorithm mimics molecular equilibrium, as each node finds its own 

lowest energy level and achieves even spacing based on computing forces of repulsion. 

Heo and Varshney also show how their algorithm may be adapted to achieve a clustered 

topology. 

Wong and colleagues66 propose a technique that allows mobile sensors to 

reposition themselves based on computing virtual attraction and repulsion forces exerted 

by other sensors and obstacles. To conserve energy, sensor movements are bounded 

within some limited range. The algorithm described by Wong et al. uses only local 

information to reposition sensors to improve coverage with minimum movement. Force 

between nodes is relative to distance; nodes that appear too close exert repulsion and 

nodes that appear too distance exert attraction. A node computes the relative influence 

from all surrounding forces in order to select a new position. To limit movement, nodes 

engage in an exponential back-off procedure to determine which node should update its 

position when. 
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 Low et al.83 consider problems arising when mobile sensors with limited sensory 

range are deployed sparsely relative to territory and without certain knowledge regarding 

location of potential targets. Under such conditions, some means must be found to direct 

sensor movement in order to provide adequate coverage of targets while limiting 

interference from an excess of sensors within the same area. Low and colleagues propose 

an ant-based, task-allocation scheme that enables mobile sensors to self-organize into 

coalitions matched to the distribution of targets across areas. Each robot measures two 

average delays, one for encounters with other robots and one for encounters with targets, 

and computes their ratio, which represents task demand as observed by the robot. Robots 

within the same vicinity will periodically exchange ratios, along with the number of 

targets currently under observation by each robot. Using this information each robot can 

conduct a probabilistic trial to determine its dominance over other robots. Winning such 

trials enhances a robot’s tendency to remain in the area, while losing enhances tendency 

to leave. Periodically, robots conduct another probabilistic trial (which also considers 

distances between areas) to determine whether to leave the current area.        

Software Configuration. Unlike most sensor networks, mobile ad hoc networks 

usually operate in a heterogeneous environment where channel conditions and protocols 

vary with place and time. This suggests a need for nodes to sense the environment and 

reconfigure platform software to match. Ribeiro-Justo et al.84 propose a monitoring and 

control system modeled after processes present in biological organisms, and then apply 

that system to maximize quality of service given to mobile users by reconfiguring node 

software, including software for digital-signal processors and field-programmable gate 

arrays, and the architecture of software components. 
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Suzuki and Yamamoto85 describe an approach, modeled after the immune system, 

allowing system configuration policies to be determined dynamically and continuously 

based on measured system conditions. Pathological system conditions (e.g., server 

overload) are recognized as antigens that stimulate antibodies (e.g., policies for thread 

management, caching, and transport protocol) based on antigen concentrations. Positive 

and negative reinforcement signals drive the evolution of antibody generation as system 

conditions vary. Simulation results show that dynamic reconfiguration provides 

substantially superior throughput when compared against a default, static configuration 

selected to match nominal operating conditions. 

Vocabulary Learning. Steels86 describes a self-organizing process through which 

distributed agents might develop an agreed vocabulary – mapping symbols to meanings. 

Here, self-organization occurs as agents iteratively exchange descriptions of such 

mappings and develop consensus over time, as agents note and react to the degree of 

communication success achieved using specific mappings. Steels shows that such a 

process could be used to generate vocabularies of limited scale in number of agents, 

symbols, and meanings. This research suggests that meanings for information exchanged 

among communicating agents might be established without explicit preprogramming. 

Behavior Shaping  

Once deployed, wireless ad hoc and sensor networks perform a range of functions some 

generic (e.g., routing), some application-dependent (e.g., information dissemination, 

querying, and search), and some resource-dependent (e.g., task assignment or service 

placement). The dynamic nature of wireless ad hoc and sensor networks prevent a priori 

design of optimal behaviors to implement such functions. For this reason, numerous 
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researchers investigate self-organizing techniques that could enable a wireless network to 

shape its own behaviors based on environment and need. Selected examples follow. 

Routing. Within wireless ad hoc and sensor networks nodes appear with new 

deployments and disappear due to mobility, power exhaustion, periods of inactivity, and 

vulnerability to destruction. Such dynamic behavior, coupled with desire to conserve 

power while limiting packet latency, presents difficult challenges for routing algorithms. 

To address some of these challenges, Baras and Mehta87 investigate how ant-like agents 

could be used to discover and maintain routes in mobile ad hoc networks. They propose a 

protocol where forward “ants” seek to reach particular destinations, while backward 

“ants” feedback success along the paths they explore. The flow of “ants” leads to 

construction of routing tables within each node to encode the probability and delay 

associated with reaching particular destinations by forwarding packets to specific 

neighbors. Baras and Mehta find that their ant-like algorithm provides improved packet 

latency when compared with a conventional routing protocol used for mobile ad hoc 

networks. On the other hand, they show that their ant-like algorithm exhibits significantly 

higher overhead in situations where nodes have high mobility. 

Servetto and Barrenechea88 investigate how interacting particle systems (modeled 

as randomized walks on random graphs) might provide inspiration for efficient multi-

path routing in networks with a large number of fixed sensors that power themselves off 

and on at random times in order to conserve power. Servetto and Barrenechea define a 

distributed algorithm where each node computes local parameters for a random walk such 

that the global network will exhibit two properties: short routes and balanced forwarding 
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load. In computing its parameters, each node uses local information augmented only by 

information from one-hop neighbors and from packets transiting the node. 

Tang et al.89 consider a unique problem associated with medical sensors 

implanted in human subjects. In particular, since radio frequency communication 

produces electromagnetic fields that can be absorbed by (and heat) human tissue, they 

propose a thermal-aware routing protocol that avoids hot spots. Temperature is estimated 

for points in a grid by using a continuous-time, differential, (Pennes) bioheat equation. 

Packets destined for a hot spot will be buffered until estimated temperature drops, and 

packets that cannot be delivered within a deadline are discarded. Next routing hops for 

packets are selected based on temperature rather than shortest path. If a packet cannot 

advance to a next hop (due to temperature constraints), then the packet is returned to the 

previous hop, which can try another path or return the packet to its previous hop, and so 

on. Simulation results, which compare thermal-aware routing against shortest-path 

routing, show that thermal-aware routing yields a smaller maximum and average 

temperature increase and induces less traffic congestion. On the other hand, shortest-path 

routing gives lower packet latencies.   

Information Dissemination. Closely related to routing protocols, information-

dissemination protocols push data from sources (e.g., sensors) toward destinations for 

which information could be relevant. Such protocols should also conserve energy, 

provide low latency, and tolerate node and link failures. Designing information-

dissemination regimes to satisfy these properties proves a challenging task. Following are 

some approaches suggested by researchers. 
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Intanagonwiwat et al.90 propose a directed-diffusion protocol where information, 

represented as attribute-value pairs, is drawn toward consumers that express an interest. 

A data sink periodically sends to its neighbors a task consisting of a time-to-live, an event 

rate, and a list of attribute-value pairs. Nodes cache each received interest, along with one 

or more gradients, where each gradient defines a direction of flow and a desired event 

rate associated with one neighbor. Interests diffuse through a network as nodes forward 

received interests to neighbors. Typically, a sink will disseminate a request for events to 

be received at a slow rate. Subsequently, the sink may evaluate the quality and timeliness 

of received events and then reinforce one particular neighbor by disseminating interest in 

a higher event rate. The reinforcement diffuses toward the nodes providing the desired 

data. Simulation results, comparing with a typical flooding algorithm, show that, in a 

network of up to 250 sensors, directed diffusion yields lower energy use and lower delay. 

Directed diffusion also adapts automatically to failures in sensor nodes. 

 Krishnamachari and Iyengar91 focus on feature extraction in sensor networks 

where some percentage of sensors may provide faulty readings. Assuming faulty sensor 

readings are uncorrelated while measurements of meaningful features are highly 

correlated, Krishnamachari and Iyengar use Bayesian analysis to demonstrate that sensors 

should only accept their own readings when at least half of neighboring sensors provide 

the same reading. Under such conditions, sensor groups can reduce fault rates by up to 

95% when 10% of sensors are faulty. Further, they define a self-organizing algorithm for 

sensors in a feature area to form a cluster, elect a leader and construct a spanning tree 

from cluster members to the leader. Finally, they show that a cluster could use stepwise 
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rectangular approximation to compress transmitted data, giving an order-of-magnitude in 

energy savings while also providing tight approximation of a feature region. 

Wischhof et al.92 describe an ambitious research project to develop a self-

organizing traffic information system, where information about traffic conditions 

propagates among cars moving along a road system. Some cars are assumed to be 

equipped with special gear (e.g., global-positioning system, wireless radio hardware and 

computer connected to in-car sensors). Each equipped car conducts a repeated cycle of 

reception, analysis, and transmission. During reception a car receives information from 

any cars within radio range. Based on received information a car updates its own traffic 

picture during an analysis phase, and subsequently transmits its updated traffic picture to 

cars within range. Given that cars are moving relative to each other and that cars are 

moving in various directions, traffic information propagates throughout the roadway. 

Simulation results investigate various design parameters of such a system, for example, 

information-dissemination rate for particular percentages of equipped cars at specific 

traffic densities. 

Query and Search. Closely related to information-dissemination protocols, query 

and search protocols allow sinks to pull data from relevant sources. Such protocols 

should provide the same low latency, energy efficiency and failure resilience required for 

information dissemination. For example, Wang et al.93 propose that attributes should be 

attached to sensors and then used to cluster sensors hierarchically in order to steer queries 

toward sensors more likely to provide relevant data. The basic idea is to organize a 

location-based, logical hierarchy, where sensors with the same attribute self-organize into 

clusters so that one elected node (the cluster head) takes responsibility for collecting 
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information and deciding whether to forward or drop queries. Cluster-head duties rotate 

in order to balance load among cluster members. Cluster-head failure can also be 

detected, stimulating a new election. Analysis shows that routing queries through a 

clustered hierarchy yields lower overhead than flooding. 

Braginsky and Estrin94 consider routing queries in sensor networks without a 

suitable geographical organization. Their proposed solution, called rumor routing, is to 

propagate queries using a random walk and to allow nodes in the network to learn routes 

(through discovery agents) to various events in the network, and to optimize those paths 

over time. Once a (random-walk) query intersects with a path to an event of interest, the 

random walk ceases and the query follows the previously discovered path. The protocol 

is designed so that both discovery agents and queries have a limited time-to-live. The 

number of discovery agents is also a design parameter. The goal of rumor routing is to 

provide a tunable (energy cost vs. discovery probability) design alternative to flooding of 

events or queries. 

Wang et al.67 consider a specific application where sensors are used to determine 

a target’s location. Given an estimate of location, they wish to choose a sensor to query in 

order to increase estimate accuracy. They propose selecting to query the sensor with 

information that would yield (nearly) the largest reduction in entropy associated with the 

probability distribution of the target’s location. Simulation results show that entropy-

based, sensor selection, with its lower computational requirement, works nearly as 

effectively as approaches based on maximizing mutual information. 

Dimakis et al.95 consider a network composed of k sensors and n storage nodes (k 

< n) that can each store the same, fixed amount of information. They propose an 
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approach that uses decentralized erasure codes to allow (with high probability) retrieval 

of k sensor readings by querying any k nodes, given that sensor readings are distributed to 

about O(ln n) storage nodes.        

Task Assignment and Service Placement. Dynamic wireless networks may require 

a subset of nodes to host or provide particular services, such as translating between 

incompatible protocols or aggregating, caching or filtering data. Deciding which nodes 

should perform particular functions may require consideration of the capabilities or state 

of individual nodes, the network topology and variations in demand. These factors 

suggest the need to dynamically assign tasks, roles, or services to specific nodes and then 

to reassign them as conditions changes. A number of researchers investigate approaches 

to satisfy such needs. For example, Frank and Romer96 define a language to specify roles 

that nodes might play, along with rules for deciding how to assign roles. They also 

provide a distributed role-assignment algorithm that nodes use to determine when to 

adopt specified roles. The algorithm periodically follows two steps: disseminate node 

property information to neighbors and evaluate rules for any required changes to node 

role. Each step occurs over a random jitter interval, where the interval for role evaluation 

exceeds the interval for property dissemination. Executing this algorithm allows roles to 

migrate among nodes as conditions change, including node population. 

Jamjoom et al.97 consider a self-organizing approach to service placement based 

on changes in demand for specific types of services. Here, each node measures local 

demand for services. As demand passes a rising threshold the node becomes a candidate 

to replicate a service; as demand falls below some descending threshold the replicated 

service may be destroyed. A configuration parameter (varied by service type) determines 
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whether a replica should be placed closer to the service consumer or provider. An 

exponential back-off algorithm controls oscillation in replica generation by freezing a 

node’s ability to create replicas under particular conditions. 

Itao and colleagues98 investigate biologically inspired models for autonomous 

components to establish cooperative relationships to provide network services. 

Components discover other components and exchange sets of traits, such as identity, type 

and capabilities. Each component maintains a relationship record for other discovered 

components to track the number and utility of interactions. When requested to provide a 

service, a component may enlist other components as needed based on their capabilities 

and on the strength of existing relationships. Users reward service providers based upon 

satisfaction received; the reward function is used to increase relationship strengths among 

components that cooperate to provide a service. 

Resource Management 

Some critical resource management operations underlie most network-wide functions in 

wireless ad hoc and sensor networks. This survey treats two such operations: 

synchronization and power conservation. Several network functions depend upon 

distributed nodes having a shared measure of time. For example, organizing a 

transmission schedule to limit interference requires that neighboring nodes have a 

synchronized notion of period and phase. Similarly, choosing sleep and wake periods for 

a node suggests need for sufficient synchrony among nodes within a network. Alternating 

sleep and wake periods provide one means of conserving power within a wireless 

network. Several other options may also be implemented to extend network lifetime. 

Consider some self-organizing approaches to synchronize and to conserve energy. 
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Synchronization. Werner-Allen and colleagues99 describe an algorithm for time 

synchronization based on a mathematical model representing the method used by fireflies 

to synchronize spontaneously. Further, these researchers provide an analysis, simulation, 

and implementation of the algorithm in the context of a multi-hop sensor network with 

asymmetric links and message losses. Results with a 24-node test bed achieve 

synchronization of about 130 microseconds (50th percentile) within less than five 

minutes. 

Elson et al.100 describe and characterize an algorithm for phase synchronization 

based upon having individual nodes log times at which they receive reference broadcasts 

and then exchange logs with neighboring nodes. Logged times can be used to perform a 

least-squares linear regression between pairs of receivers, which allows a timestamp from 

a remote node to be converted locally into an equivalent timestamp. Experiments with the 

proposed technique demonstrated that two small sensors could maintain synchronization 

within 11 microseconds on a shared channel where a third node provided reference 

broadcasts. Additional experiments showed that the algorithm could be used in multi-hop 

networks; however, precision decays – the average error is proportional to the square root 

of the number of hops. 

Power Conservation. Most designs for wireless sensor networks consider 

techniques to reduce energy consumption. Two fundamental techniques include powering 

off radios and limiting transmission power. A number of researchers investigate how to 

apply these techniques without centralized control. For example, Chen and colleagues61 

observe that all nodes need not be powered on at all times in networks with sufficient 

density – in fact they argue that powering on too many nodes can create interference and 
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diminish network capacity. They define a decentralized algorithm allowing nodes to 

make local decisions about when to sleep and when to wake up and become a forwarding 

node. Whenever a node discovers two neighbors cannot communicate, the node delays 

before volunteering to forward packets. Nodes with more power delay for a shorter time, 

as do nodes that would connect more neighbors. This allows nodes with best ability and 

greatest utility to power on, allowing less capable and beneficial nodes to remain 

dormant. 

Conner et al.101 investigate two complementary algorithms to increase the lifespan 

of sensor networks. One algorithm systematically adjusts a network topology to shift 

forwarding burden to energy-rich nodes, while the other algorithm enables non-

forwarding nodes to sleep most of the time without missing packets. The topology-

control algorithm, which adjusts based on periodic probing, favors selecting fewer 

forwarding nodes that are more richly connected, leading to a shallow network where 

most nodes can be reached within a hop or two. The node-scheduling algorithm allows a 

node at power up to discover (via snooping) the current schedule during which other 

nodes send short messages indicating any intention to send a data packet. The new node 

can then select an open spot in the schedule. To send a data message, a node first 

announces an intention to send at a particular time (avoiding known conflicts) to a 

particular destination, which will then know when to wake up to receive the transmission. 

This algorithm assumes that data transmissions will be relatively rare and that power 

savings may be traded for higher latency. 

Xu and colleagues102 compare two distributed approaches to select redundant 

nodes in a sensor network in order to turn off their radios. One approach, called 



K. Mills  4/26/2006 

 33 

geographic-adaptive fidelity, partitions a network into a virtual grid based on maximum 

radio range, where any node within a grid can communicate with all nodes in all adjacent 

grids. Nodes periodically exchange grid identifiers. Only one node within each grid 

remains powered on after each such exchange. The second approach, called cluster-based 

energy conservation, requires nodes to self-organize into clusters, where all nodes can be 

reached within at most two hops, and then to elect a cluster head (the most energy-rich 

node that can reach all cluster nodes within one hop) and gateways (i.e., nodes that can 

hear cluster heads or gateway nodes within other clusters).  When multiple gateways exist 

within a cluster one is elected to remain on by giving priority to gateways that can reach 

other cluster heads and to gateways with more available energy. Redundant nodes in a 

cluster are powered off but intermittently awaken to rerun the algorithm in order to adapt 

to any changes. 

Kubisch et al.103 compare two node-local algorithms for adapting transmission 

power within fixed, wireless sensor networks. One algorithm requires nodes to 

periodically broadcast probe packets and to listen for acknowledgments from neighboring 

nodes. Failure to receive a sufficient number of acknowledgments stimulates a node to 

increase transmit power and retry. Receiving too many acknowledgments causes a node 

to decrease transmit power and retry. Receiving a target number of acknowledgments 

terminates a probe period and establishes a level for transmission power. The second 

algorithm includes in each acknowledgment the number of neighbors that can be reached 

by the respondent. The probe issuer computes a mean number of neighbors that it should 

be able to reach. If the mean is too small, then transmit power is increased and another 

probe is sent. If the mean is too large, then transmit power is decreased and another probe 
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issued. Simulation results find that using these self-organizing algorithms leads to 

network lifetimes within a lifetime or two of the global optimum that might be achieved 

using centralized computations. 

Resiliency 

Given potential for sensor networks to be deployed in critical applications, issues arise 

regarding resiliency in the face of failures and attacks. A small sampling of related 

research follows. 

Failures. Gupta and Younis104 propose a method to recover sensors from a cluster 

with a failed cluster head. Their method does not require network-wide re-clustering. 

Fault detection depends upon cluster heads periodically exchanging vectors indicating 

perceived status of other cluster heads. Each cluster head uses these vectors to determine 

a consensus view of failed cluster heads. The interval between vector exchanges expands 

multiplicatively over time when all cluster heads appear operational and contracts 

linearly during periods when some cluster heads appear suspect. Variation in the vector-

exchange cycle lowers overhead for stable topologies, yet improves responsiveness 

during periods of instability. Fault recovery depends upon the initial technique adopted 

for cluster formation, where the protocol has cluster heads identify all sensors within 

radio range and then partition that set into primary and backup cluster members. The 

partitioning places sensors into the primary set based on minimizing communication cost. 

During recovery, sensors in multiple backup sets are reassigned to the primary set of the 

cluster head that offers the lowest communication cost. 

Bychkovskiy and colleagues105 consider the problem of post-deployment 

calibration to remove systematic bias from sensor readings in large, dense networks. 
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These researchers propose a two-phase algorithm. In phase one, sensors with close spatial 

correlation first exchange temporally correlated readings and then devise pair-wise 

mapping functions between statistically relevant data points. In phase two, sensors 

exchange matrices of mapping functions and then independently iterate over possible 

paths through the mapping functions to compute the mapping outcome with the highest 

confidence. Improving accuracy and computational efficiency of the proposed algorithm 

requires further study. 

Attacks. Potential attacks against wireless ad hoc and sensor networks come in a 

variety of forms. This survey considers two attack types: injecting false sensor reports 

and shortening network lifetime. Ye et al.106 investigate a statistical mechanism to detect 

and drop false information within a large, dense, sensor network where elected nodes 

aggregate and forward readings collected by nearby sensors. The mechanism requires that 

a data sink possess an indexed collection of keys partitioned into disjoint sets and that 

each sensor is randomly assigned a subset of index-key pairs from one partition. Any 

sensor report is forwarded along with a message hash generated based on one of the keys 

(key index also forwarded) within the sensor. An aggregating node forwards a sensor 

report along with one hash and key index in each of some number of key partitions. 

While flowing through the network, probability increases that a report transits a node that 

shares one of the keys used to generate one of the hashes. In such a case the transit node 

can verify that hash and could detect a forged report because a compromised node is 

uable to correctly forge all hashes for an aggregated report. Analysis and simulation 

results suggest that the proposed mechanism could drop between 80% and 90% of 

injected false reports within 10 forwarding hops with an overhead of only 14 bytes per 
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sensor report. Dropping false reports early could reduce energy consumption and extend 

the network lifetime by a factor of two. 

  Yu and Liu107 propose a self-organizing scheme that encourages nodes in mobile 

ad hoc networks to cooperate and simultaneously to resist attacks aimed to degrade 

performance and to shorten network lifetime. Assuming that node identities may not be 

spoofed, the scheme requires that every sent packet be acknowledged and that 

acknowledgments for packets ripple back along the transmission route from the 

destination toward the source. Forwarding packets and receiving acknowledgments cause 

updates to a balance sheet indicating the net difference between the utility a node 

contributes to each of its neighbors and the utility each neighbor contributes to the node. 

Nodes continue to forward packets for neighbors unless the net negative utility falls 

below some threshold. Route discovery is augmented to include information about the 

relative net utility between a node and all other nodes on particular paths. Packets will not 

be forwarded along routes without sufficient net utility to ensure delivery. Among the 

remaining routes, a packet is forwarded on the path that promises the maximum expected 

utility per unit of energy. Over time, cooperating nodes reinforce their net utilities and 

malicious nodes are shunned. 

Discussion 

Designing, deploying and operating large wireless ad hoc and sensor networks will be 

infeasible using traditional approaches. This follows from several anticipated traits: large 

numbers of nodes, uncertain communication environments, continuously changing node 

populations, vulnerability to attacks, and frequent and significant variations in user 

demands. Researchers are exploring a number of approaches, inspired by biological, 
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social, economic and other models, to enable wireless networks to self-organize and 

adapt to perceived changes in the environment. While such approaches appear to provide 

the only feasible path to deal with tomorrow’s wireless networks, a number of questions 

remain to be investigated. 

Researchers identify specific combinations of issues to address. For example, how 

can one improve network lifetime while achieving bounded latency? As another example, 

how can one identify and remove bogus traffic from a network in order to reduce power 

consumption and improve accuracy of sensor information? As a third example, how can 

one encourage nodes to transmit information while simultaneously identifying and 

eliminating malicious nodes from a topology? As a fourth example, how can a network 

topology be varied over time to provide improved network lifetime and resilience? 

Deploying robust sensor networks will likely require simultaneous answers to these (and 

other) questions. Researchers have yet to experiment with self-organizing designs that 

can simultaneously address multiple dimensions of performance, security and robustness. 

One wonders how (or whether) a reasonably complete set of design objectives might be 

satisfied within a self-organizing framework? 

Researchers also propose a range of approaches to self-organization. These cover 

various economic, biological, and social mechanisms, as well as models from physics and 

chemistry. Do some underlying principles unify all approaches to self-organization? If so, 

what are these principles? If not, do selected mechanisms and models work best for 

specific problems? If so, what are the implications of combining various mechanisms 

within the same system design? Will interaction effects arise? If so, how can such effects 

be identified and mitigated? 
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Phase transitions pose another area of concern. Many natural systems tend to self-

organize to a critical, stable state, where equilibrium persists for some period before a 

transient turbulence, followed by return to a new stable state. Other possible transitions 

drive a system toward oscillation or chaos. Could self-organizing wireless networks 

exhibit similar propensity to reach a critical equilibrium? Recall that Ho et al.79 found 

critical thresholds for one of their design parameters. Below a minimum parameter value 

their system failed to self-organize, while their system always self-organized above a 

maximum value. Between these two values, probability of self-organizing increased with 

the value of the design parameter. This shows self-organizing networks can exhibit phase 

transitions. Krishnamachari et al.70 also report phase transitions in wireless networks. In 

one case, they identify a critical threshold of node density that leads to global 

connectivity. Below the threshold a network will not achieve complete connectivity, 

while above the threshold a network will generate interference that wastes energy. 

Further, they show that increasing power to generate connectivity leads to interference, 

which can lower probability of achieving a global network. Krishnamachari and 

colleagues suggest that phase-transition analysis could help to select design parameters 

that enable a self-organizing wireless network to reach a desirable operating point. But 

what about the possibility for changing conditions to disturb equilibrium and induce 

periods of instability, or worst oscillation or chaos? Can such conditions be forecast, 

analyzed and resisted? These questions remain open.   

Overall, the picture appears cloudy with regard to self-organization in wireless 

networks. On one hand, wireless ad hoc and sensor networks composed of large numbers 

of elements cannot be designed, deployed and operated without the ability for 
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components to self-organize and self-manage. On the other hand, significant questions 

remain about the behaviors that would be exhibited by such self-organizing systems. This 

suggests need for research to develop techniques and tools to measure, analyze, visualize 

and understand macroscopic (or global) behavior in networks. Only with such capabilities 

would it prove possible to assess likely system-wide behaviors arising from self-

organizing designs that attempt to address multiple dimensions of network performance, 

security and robustness. Without an ability to understand global consequences of 

particular design decisions, deploying self-organizing networks could prove to be too 

risky. 

Conclusions 

This paper surveyed recent research on self-organizing techniques applied to design and 

control large wireless ad hoc and sensor networks. The survey divided that research into 

five functional categories: (1) resource sharing, (2) structure formation and maintenance, 

(3) behavior shaping, (4) resource management, and (5) resiliency. The paper also 

provided a brief outline of current scientific thinking regarding self-organization, both as 

a natural property of complex adaptive systems and as a design strategy to control 

distributed systems. The survey raised several concerns that remain to be addressed. Can 

large, wireless systems be designed within a self-organizing framework to meet a 

comprehensive set of design objectives? Can one set of self-organizing principles be 

defined, understood and applied to design distributed systems?  Can mixed models of 

self-organization operate simultaneously within a single system without muting, 

amplifying or interfering with each other? Will self-organized distributed systems 

achieve stable states, or exhibit phase transitions to turbulent periods, oscillations or 
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chaos? Can techniques be discovered to measure, analyze, visualize and understand 

global behavior in large distributed systems? Large wireless ad hoc and sensor networks 

cannot be designed without a foundation of self-organizing strategies; yet the number and 

significance of unanswered questions suggests that deploying such networks would prove 

quite risky. Given the acute future need and the current, limited, state of knowledge, 

researchers must be encouraged to continue investigating key theoretical questions 

underlying self-organization as a principle for designing complex information systems. 
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